Granular Computing
نویسنده
چکیده
It is well accepted that in many real life situations information is not certain and precise but rather uncertain or imprecise. To describe uncertainty probability theory emerged in the 17th and 18th century. Bernoulli, Laplace and Pascal are considered to be the fathers of probability theory. Today probability can still be considered as the prevalent theory to describe uncertainty. However, in the year 1965 Zadeh seemed to have challenged probability theory by introducing fuzzy sets as a theory dealing with uncertainty (Zadeh, 1965). Since then it has been discussed whether probability and fuzzy set theory are complementary or rather competitive (Zadeh, 1995). Sometimes fuzzy sets theory is even considered as a subset of probability theory and therefore dispensable. Although the discussion on the relationship of probability and fuzziness seems to have lost the intensity of its early years it is still continuing today. However, fuzzy set theory has established itself as a central approach to tackle uncertainty. For a discussion on the relationship of probability and fuzziness the reader is referred to e.g. Dubois, Prade (1993), Ross et al. (2002) or Zadeh (1995). In the meantime further ideas how to deal with uncertainty have been suggested. For example, Pawlak introduced rough sets in the beginning of the eighties of the last century (Pawlak, 1982), a theory that has risen increasing attentions in the last years. For a comparison of probability, fuzzy sets and rough sets the reader is referred to Lin (2002). Presently research is conducted to develop a Generalized Theory of Uncertainty (GTU) as a framework for any kind of uncertainty whether it is based on probability, fuzziness besides others (Zadeh, 2005). Cornerstones in this theory are the concepts of information granularity (Zadeh, 1979) and generalized constraints (Zadeh, 1986). In this context the term Granular Computing was first suggested by Lin (1998a, 1998b), however it still lacks of a unique and well accepted definition. So, for example, Zadeh (2006a) colorfully calls granular computing “ballpark computing” or more precisely “a mode of computation in which the objects of computation are generalized constraints”.
منابع مشابه
INTERVAL ANALYSIS-BASED HYPERBOX GRANULAR COMPUTING CLASSIFICATION ALGORITHMS
Representation of a granule, relation and operation between two granules are mainly researched in granular computing. Hyperbox granular computing classification algorithms (HBGrC) are proposed based on interval analysis. Firstly, a granule is represented as the hyperbox which is the Cartesian product of $N$ intervals for classification in the $N$-dimensional space. Secondly, the relation betwee...
متن کاملSYSTEM MODELING WITH FUZZY MODELS: FUNDAMENTAL DEVELOPMENTS AND PERSPECTIVES
In this study, we offer a general view at the area of fuzzy modeling and fuzzymodels, identify the visible development phases and elaborate on a new and promisingdirections of system modeling by introducing a concept of granular models. Granularmodels, especially granular fuzzy models constitute an important generalization of existingfuzzy models and, in contrast to the existing models, generat...
متن کاملOutlier Detection Based on Granular Computing
As an emerging conceptual and computing paradigm of information processing, granular computing has received much attention recently. Many models and methods of granular computing have been proposed and studied. Among them was the granular computing model using information tables. In this paper, we shall demonstrate the application of this granular computing model for the study of a specific dat...
متن کاملThree Perspectives of Granular Computing
As an emerging field of study, granular computing has received much attention. Many models, frameworks, methods and techniques have been proposed and studied. It is perhaps the time to seek for a general and unified view so that fundamental issues can be examined and clarified. This paper examines granular computing from three perspectives. By viewing granular computing as a way of structured t...
متن کاملGranular Computing and Inexactness
This paper discusses on granular computing and the role of inexactness in its process. It will discuss on emergence of granular computing and consider fuzzy sets. Fuzzy set is considered due to ability of dealing with uncertainties, where f.ggeneralization has intersected for fuzzy and granular computing. Linguistic variables are discussed due to their utilizations for labeling fuzzy granules.
متن کاملA Granular Computing Approach to Machine Learning
The key to granular computing is to make use of granules in problem solving. Classification is one of the well studied problems in machine learning and data mining as it involves of discovery knowledge from large databases. We presents a granular computing view to classification problems and propose a granular computing approach to classification in this paper. The ID3 [8] and PRISM [2] algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009